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Threats and Countermeasures for Network Security

Peter J. Denning

Research Institute for Advanced Computer Science

January 8, 1991

As computing and telecommunications grow worldwide and are incorporated ever
more deeply into business practices, we must deal with a widening variety of threats to
the secure and dependable operation of our networks and the computers attached to them.
Until 1987, breakins by anonymous intruders and frauds or thefts by insiders were the
major threats. In that year, these threats were agumented by the new threats of viruses
and worms, which are programs that act as multiplicative surrogates for an intruder.

Moreover, viruses and worms are often loaded with logic bombs that wreak damage at
some time after the infection.

Technologies for authentication and secrecy, supplemented by good management
practices, are the principal countermeasures. Many observers have asked why little
action has been taken to deploy these countermeasures. The recent appearance of the
NRC report, Computers at Risk (1990), and the edited collection, Computers Under
Arnack (Addison-Wesley 1990), demonstrate a growing interest in doing just that. The

positive public response to has been gratifying and portends safer networks in the years
ahead.

Over the past several years I have written on these aspects for American Scientist
magazine. What follows are the texts of four articles:

Computer Viruses - o 1988, No 3
The Internet Worm 1989, No 2
Security of Data in Networks 1987, No 1
Baffling Big Brother 1988, No §
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Computer Viruses
American Scientist 1988, No 3

The worm, Trojan horse, bacterium, and virus are destructive programs
that attack information stored in a computer’s memory. Virus programs,
which propagate by incorporating copies of themselves into other
programs, are a growing menace in the late-1980s world of unprotected,
networked workstations and personal computers. Limited immunity is
offered by memory protection hardware, digitally authenticated object
programs, and antibody programs that kill specific viruses. Additional
immunity can be gained from the practice of digital hygiene, primarily
the refusal to use software from untrusted sources. Full immunity
requires attention in a social dimension, the accountability of
programmers.

Sometime in the middle 1970s, the network of computers at a Silicon Valley
research center was taken over by a program that loaded itself into an idle workstation,
disabled the keyboard, drew random pictures on the screen, and monitored the network
for other idle workstations to invade. The entire network and all the workstations had to
be shut down to restore normal operation.

In early September 1986, a talented intruder broke into a large number of computer
systems in the San Francisco area, including 9 universities, 15 Silicon Valley companies,
9 ARPANET sites, and 3 government laboratories. The intruder left behind recompiled
login programs to simplify his return. His goal was apparently to achieve a high score on
the number of computers cracked; no damage was done ().

In December 1987, a Christmas message that originated in West Germany
propagated into the Bitnet network of IBM machines in the United States. The message
contained a program that displayed an image of a Christmas tree and sent copies of itself
to everyone in the mail distribution list of the user for whom it was running. This prolific
program rapidly clogged the network with a geometrically growing number of copies of
itself. Finally the network had to be shut down until all copies could be located and
expurgated.

For two months in the fall of 1987, a program quietly incorporated copies of itself
into programs on personal computers at the Hebrew University. It was discovered and
dismantled by a student, Yuval Rakavy, who noticed that certain library programs were
growing longer for no apparent reason. He isolated the errant code and discovered that if
executed on certain Fridays the thirteenth the computer running it would slow down by
80%, and on Friday 13 May 1988, it would erase all files. That date was the fortieth
anniversary of the last day Palestine was récognized as a separate political entity.
Rakavy designed another program that detected and erased all copies of the errant
program it could find. Even so, he could not be completely sure he had eradicated it.
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These four incidents illustrate the major types of programs that attack other
programs in a computer’s memory. The first type is a worm, a program that invades a
workstation and disables it. The second is a Trojan horse, a program that performs some
apparently useful function, such as login, while containing hidden code that performs an
unwanted, usually malicious function. This name is inspired by the legendary wooden
horse built by the Greek army, ostensibly as an offering to Athena, which in the dark of
night dxsgorged its bellyful of murderous soldiers into the sleeping streets of Troy. The
third type is a bacterium, a program that replicates itself and feeds off the host system by
precmptmg processor and memory capacity. The fourth is a virus, a program that
incorporates copies of itself into the machine codes of other programs and, when those
programs are invoked, wreaks havoc in the manner of a Trojan horse.

I can cite numerous other incidents in which information stored in computers has
been attacked by hostile programs. An eastern medical center lost nearly 40% of its
records to a malicious program in its system. Students at Lehigh University lost
homework and other data when a virus erased diskettes inserted into campus personal
computers. Some programs available publicly from electronic bulletin boards have
destroyed information on the disks of computers into which they were read. A recent
New York Times article (2) describes many examples and documents the rising concern
among computer network managers, software dealers, and personal computer users about
these forms of electronic vandalism. In an effort to alert concerned computer scientists
to the onslaught, the Association for Computing Machinery sponsors the Computer Risks
Forum, an electronic newsletter moderated by Peter G. Neumann of SRI International,
which regularly posts notices and analyses of such dangers.

The recent rash of viral attacks has drawn everyone’s attention to the more general
problem of computer security, a subject of great complexity which has fascinated
researchers since the early 1960s (3). The possibility of pernicious programs propagating
through a file system has been known for at least twenty-five years. In his May 1985
Computer Recreations column in Scientific American, Kee Dewdney documented a
whole menagerie of beastly threats to information stored in computer memories,
especmlly those of personal computers (4), where an infected diskette can transmit a
virus to the main memory of the computer, and thcncc to any other diskette (or to hard
disk). Ken Thompson, a principal designer of UNIX™, and Ian Witten have documented
some of the more subtle threats to computers that have come to light in the 1980s (5,6).

It is important to keep in mind that worms, Trojan horses, bacteria, and viruses are
all programs designed by human beings. Although a discussion of these menaces brings
up many intriguing technical issues, we should not forget that at the root of the problem
are programmers performing disruptive acts under the cloak of anonymity conveniently
provided by many computer systems.

I'will focus on viruses, the most pernicious of the attacks against information in
computers. A virus is a code segment that has been incorporated into the body of another
program, “‘infecting’’ it. When the virus code is executed, it locates a few other
uninfected programs and infects them; in due course, the number of infected programs
can grow quite large. Viruses can spread with remarkable speed: in experimental work
performed in 1983 and 1984, Fred Cohen of the University of Cincinnati demonstrated
that a simple virus program can propagate to nearly every part of a normally operating
computer system within a matter of hours. Most viruses contain a marker that allows
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them to recognize copies of themselves; this avoids discovery, because otherwise some
programs would get progressively longer under multiple infections. The destructive acts
themselves come later: any copy of the virus that runs after some appointed date will
perform such an unwanted function.

A Trojan horse program is the most common means of introducing a virus into a
system. It is possible to rig a compiler with an invisible Trojan horse that implants
another Trojan horse into any selected program during compilation.

A virus that takes the form of statements inserted into the high-level language
version of a program -- that is, into the source file -- can possibly be detected by an
expert who reads the program, but finding such a program in a large system can be
extremely difficult. Many viruses are designed to evade detection completely by
attaching themselves to object files, the machine coded images of high-level program
sources that are produced by compilation. These viruses cannot be detected from a
reading source programs.

The first serious discussions of Trojan horses took place in the 1960s. Various
hardware features were developed to reduce the chances of attack (3), including virtual
memory, which restricts a program’s to a limited region of memory, its ‘‘address space”’
(7). All these features are based on the principle of least privilege, which reduces the set
of accessible objects to the minimum a program needs in order to perform its function.
Because a suspect program can be run in a strictly confined mode, any Trojan horse it
contains will be unable to perform much damage.

How effective is virtual memory against viruses? Memory protection hardware can
significantly reduce the risk, but a virus can still propagate to legitimately accessible
programs, including portions of the operating system. The rate of propagation may be
slowed by virtual memory, but propagation is not stopped. Most PCs are especially
vulnerable because they have no memory protection hardware at all; an executing
program has free access to anything in memory or on disk. A network of PCs is even
more vulnerable, because any PC can propagate an infected copy of a program to any
other PC, no questions asked.

What can be done to protect against viruses in a computer or workstation without
memory protection hardware or controls on access to files? One common proposal is to
retrofit the operating system with a write query check that asks the user for permission to
allow the running program to modify a file. This gives the user an opportunity to
determine that the program is attempting to gain acces to unauthorized files. It is,
unfortunately, hardly workable even for experienced programmers because of the
difficulty of discovering which files a running program must legitimately modify. A
design that suppresses write queries for files named in an authorization list associated
with a program can be subverted by a virus that adds the name of the unauthorized file to
the list before attacking it.

A more powerful immunization scheme is based on digital signatures of object files.
When a program is installed in a system, an authenticator is created by producing a
checksum that depends on all the bits of a file, which is then signed with the secret key of
the person who stored the file (8). The authenticator can be unlocked by applying the
public key of that person. A user can confirm that a file is an exact copy of what was

stored by computing its checksum and comparing that with the unlocked authenticator.
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A program infected by a virus would fail this test. Without access to the secret key, the
designer of the virus could not produce a valid authenticator for the infected program.
This scheme also works for programs obtained from trusted sources over a network: each
program comes with an authenticator sealed by the trusted producer.

One way to implement this scheme is to equip the operating system with a
background process that randomly checks files against their authenticators. If a virus has
entered the system, this process will eventually discover an infected file and raise the
alarm. Another way to implement this scheme is to ‘‘innoculate’’ an object program by
placing an authentication subroutine at its entry point. This implementation is slow,
however, and can be defeated by a virus that invades entry points: by the time the
authenticator gets control, the virus will already have acted.

The authenticator scheme relies on the protection of the secret key, which cannot be
complete unless the key is kept outside the system. It also rests on the integrity of the
system itself: for example, a sophisticated attack against the program that reports whether
a file has been infected could disable the scheme.

A program called an antibody can offer limited remedies should a virus penetrate a
system. Such a program examines an object file to determine whether a known virus has
been incorporated. It may also remove the virus from the infected program. This limited
form of protection can be very effective against known viruses, but it cannot identify new
ones.

As we have seen, each of the major technical mechanisms -- memory protection
hardware, digital-signature authenticators, and antibodies -~ offers limited protection
against viruses (and Trojan horses). Can the operating procedures followed by those who
use a computer system lower the risk further?

Yes! An additional measure of protection can be obtained by care in the way one
uses a computer. Analogies with food and drug safety are helpful. Just as one would not
consider purchasing food or capsules in unsealed containers or from untrusted sources,
one can refuse to use any unsealed software or software from untrusted sources. Never
insert a diskette that has no manufacturer’s seal into your PC. Never use a program
borrowed from someone who does not practice digital hygiene to your own standards.
Beware of software obtained from public bulletin boards. Purchase programs that check
other programs for known viruses. Be wary of public domain software (including virus
eradicators!). Monitor the last-modified dates of programs and files. Don’t execute
programs sent in electronic mail -- even your friends may have inadvertently forwarded a
virus. Don’t let employees bring software from home.

The problem of viruses is difficult, both technically and operationally, and no
solution oriented entirely along technical or operational lines can be complete. There is a
third, social dimension to the problem: we don’t know how to hold people fully
accountable for the actions of their programs in a networked system of computers. A
complete solution must involve all three dimensions.

Computer scientists are divided over whether it serves the field to publish accounts
of viral attacks in full technical detail. (This article, being superficial, does not count.)
Some hold that revelations of technical detail -- as in Dewdney (4) or Witten (6) -- are
reprehensible because they give the few would-be perpetrators a blueprint for actions that
can make life exceedingly difficult for the many innocent users, and because there are
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few successful defenses against the attacks. Others hold that the main hope for a long
term solution is to mobilize the ‘‘good guys’* by setting forth the problems in detail; the
short term risk, according to this view, is offset by the long-term gain. Most computer
scientists favor this way of mobilizing forces to oppose computer sabotage.
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The Internet Worm
American Scientist 1989, No 2

In November 1988 a worm program invaded several thousand UNIX-
operated Sun workstations and VAX computers attached to the Research
Internet, seriously disrupting service for several days but damaging no
files. An analysis of the worm’s decompiled code revealed a battery of
attacks by a knowledgeable insider, and demonstrated a number of
security weaknesses. The attack occurred in an open network, and little
can be inferred about the vulnerabilities of closed networks used for
critical operations. The attack showed that password protection
procedures need review and strengthening. It showed that sets of
mutually trusting computers need to be carefully controlled. Sharp
public reaction crystalized into a demand for user awareness and
accountability in a networked world.

Late in the evening of 2 November 1988 someone released a ‘‘worm’’ program into
the ARPAnet. The program expropriated the resources of each invaded computer and
generated replicas of itself on other computers, but did no apparent damage. Within

hours, it had spread to several thousand computers attached to the worldwide Research
Internet.

Computers infested with the worm were soon laboring under a huge load of
programs that looked like innocuous “‘shell’’ programs (command interpreters).
Attempts to kill these programs were ineffective: new copies would appear from Internet
connections as fast as old copies were deleted. Many systems had to be shut down and

the security loopholes closed before they could be restarted on the network without
reinfestation.

Fortuitously, the annual meeting of UNIX experts opened at Berkeley on the
morning of November 3. They quickly went to work to capture and dissect the worm.
By that evening, they had distributed system fixes to close all the security loopholes used
by the worm to infest new systems. By the morning of November 4, teams at MIT,
Berkeley, and other institutions had decompiled the worm code and examined the
worm’s structure in the programming language C. They were able to confirm that the
worm did not delete or modify files already in a computer. It did not install Trojan
horses, exploit superuser privileges, or transmit passwords it had deciphered. It
propagated only by the network protocols TCP/IP, and it infested only computers running
Berkeley UNIX but not AT&T System V UNIX. As the community of users breathed a
collective sigh of relief, system administrators installed the fixes, purged all copies of the
worm, and restarted the downed systems. Most hosts were reconnected to the Internet by
November 6, but the worm’s effect lingered: a few hosts were will disconnected as late
as November 10, and mail backlogs did not clear until November 12.
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The worm’s fast and massive infestation was so portentous that the New York Times
ran updates on page one for a week. The Wall Street Journal and USA Today gave it
front-page coverage. It was the subject of two articles in Science magazine (1,2). It was
covered by the wire services, the news shows, and the talk shows. These accounts said
that over 6,000 computers were infested, but later estimates put the actual number
between 3,000 and 4,000, about 5% of those attached to the Internet.

On November S the New York Times broke the story that the alleged culprit was
Robert T. Morris, a Cornell graduate student and son of a well-known computer security
expert who is the chief scientist at the National Computer Security Center. A friend
reportedly said that Morris intended no disruption; the worm was supposed to propagate
slowly but a design error made it unexpectedly prolific. When he realized what was
happening, Morris has a friend post on an electronic bulletin board instructions telling
how to disable the worm -- but no one could access them because all affected computers
were down. As of February 1989, no indictments had been filed against Morris as
authorities pondered legal questions. Morris himself was silent throughout.

The worm’s author went to great lengths to confound its discovery and analysis, a
delaying tactic that permitted the massive infestation. By early December 1988, Eugene
Spafford of Purdue (3), Donn Seeley of Utah (4), and Mark Eichin and Jon Rochlis of
MIT (5) had published technical reports about the decompiled worm that described the
modes of infestation and the methods of camouflage. (See Box 1.) They were impressed
with the worm’s battery of attacks, saying that, despite errors in the source program, the
code was competently done. The National Computer Security Center requested them and
others not to publish the decompiled code, fearing that troublemakers might reuse the
code and modify it for destructive acts. Seeley replied that the question is moot because
the worm published itself in thousands of computers.

The reactions of the computer science community have been passionate. Some
editorial writers report that Morris has become a folk hero among students and
programmers, who believe that the community ought to be grateful that he showed us
weaknesses in our computer networks in time to correct them before someone launches a
malicious attack. The great majority of opinion, however, seems to go the other way.
Various organizations have issued position statements decrying the incident and calling
for action to prevent its recurrence. No other recent break-in has provoked similar
outcries.

The organization Computer Professionals for Social Responsibility issued a
statement calling the release of the worm an irresponsible act and declaring that no
programmer can guarantee that a self-replicating program will have no unwanted
consequences. The statement said that experiments to demonstrate network
vulnerabilities should be done under controlled conditions with prior permission, and it
called for codes of ethics that recognize the shared needs of network users. Finally, the
statement criticized the National Computer Security Center’s attempts to block
publication of the decompiled worm code as short-sighted because an effective way to
correct widespread security flaws is to publish descriptions of those flaws widely.

The boards of directors of the CSNET and BITNET networks issued a joint ,
statement deploring the irresponsibility of the worm’s author and the disruption in the
research community caused by the incident. Their statement called for a committee that

would issue a code of network ethics and propose enforcement procedures. It also called
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for more attention to ethics in university curricula. (At Stanford, Helen Nissenbaum and
Terry Winograd have already initiated a seminar that will examine just such questions.)

The advisory panel for the division of networking and research infrastructure at
NSF endorsed the CSNET/BITNET statement, citing as unethical any disruption of the
intended use of networks, wasting of resources through disruption, destruction of
computer-based information, compromising of privacy, or actions that make necessary an
unplanned consumption of resources for control and eradication. The Internet Activities
Board has drafted a similar statement. The president of the Association for Computing
Machinery called on the computer science community to make network hygiene a
standard practice (6). A congressional bill introduced July 1988 by Wally Herger (R-
Calif.) and Robert Carr (D-Mich.), called the Computer Virus Eradication Act, will
doubtless reappear in the 101st Congress.

Obviously, all this interest is provoked by the massive scale of the worm’s
infestation and the queasy feeling that follows a close call. It also provides an
opportunity to review key areas of special concern in networking. In what follows, I will
comment on vulnerabilities of open and closed networks, password protection, and
responsible behavior of network users.

The rich imagery of worms and viruses does not promote cool assessments of what
actually happened and of what the future might hold. It is interesting that as recently as
1982 worm programs were envisaged as helpful entities that located and used idle
workstations for productive purposes (7); most people no longer make this benign
interpretation. Some of the media reports have mistakenly called the invading program a
virus rather than a worm. A virus is a code segment that embeds itself inside a legitimate
program and is activated when that program is; it then embeds another copy of itself in
another legitimate but uninfected program, and it usually inflicts damage (8). Because
the virus is a more insidious attack, the mistaken use of terminology exaggerated the
seriousness of what happened. Given that the security weaknesses in the Internet service
programs have been repaired, it is unlikely that an attack against these specific
weaknesses could be launched again.

While it is important not to overestimate the seriousness of the attack, it is equally
important not to underestimate it. After all, the worm caused a massive disruption of
service.

It is important to aknowledge a widespread concern that grew out of this attack: Are
networks on which commerce, transportation, utilities, national defense, space flight, and
other critical activities depend also vulnerable? This concern arises from an awareness
of the extent to which the well-being of our society depends on the continued proper
functioning of vast networks that may be fragile. When considering this question, it is
important to bear in mind that the Internet is an open network and the others are closed.

What is the risk to an open network? Because the Internet is open by design, its
computers also contain extensive backup systems. Thus, in the worst case, if the worm
had destroyed all the files in all the computers it invaded, most users would have
experienced the loss of only a day’s work. (This contrasts starkly to the threat facing
most PC users, who because of the lack of effective backup mechanisms stand to lose
years of work to a virus attack.) In addition, users would certainly lose access to their
systems for a day or more as the operations staff restored information from backups.
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What are the implications for other networks? Computers containing proprietary
information or supporting critical operations are not generally connected to the Internet;
the few exceptions are guarded by gateways that enforce strict access controls. For
example, the Defense Department’s command and control network and NASA’s space
shuttle network are designed for security and safety; it is virtually impossible for a virus
or worm to enter from the outside, and internal mechanisms would limit damage from a
virus or worm implanted from the inside. Given that the Internet is designed for
openness, it is impossible to draw conclusions about closed networks from this incident.

Calls to restrict access to the Internet are ill-advised. The openness of the Internet is
closely aligned with a deeply held value of the scientific community, the free exchange
of research findings. The great majority of scientists are willing to accept the risk that
their computers might be temporarily disabled by an attack, especially if a backup system
limits losses to a day’s work.

The next area that calls for special concern is password security. Although
trapdoors and other weaknesses in Internet protocols have been closed, password
protection is a serious weakness that remains. (See Box 2.) The risk is compounded by
““mutually trusting hosts,”” a design in which a group of workstations is declared as a
single system: access to one constitutes access to all.

Many PC systems store passwords as unenciphered cleartext, or they do not use
passwords at all. When these systems become part of a set of trusting hosts, they are an
obvious security weakness. Fortunately, most systems do not store passwords as
Cleartext. In UNIX, for example, the login procedure takes the user’s password,
enciphers it, and compares the result with the user’s enciphered entry in the password
file. But one can discover passwords from a limited set of candidates by enciphering
each one and comparing it with the password file until a match is found. One study of
password files revealed that anywhere from 8% to 30% of the passwords were the literal
account name or some simple variation; for example, an account named *‘abc’’ is likely
to have the password ‘‘abc’’, ““bca’’, or ““‘abcabe’’ (9). The worm program used a new
version of the password encryption algorithm that was nine times faster than the regular
version in UNIX; this allowed it to try many more passwords in a given time and
increased its chances of breaking into at least one account on a system. Having broken
into an account, the worm gained easy access to that computer’s trusted neighbors.

The final area of special concern is the responsibilities of people who participate in
a large networked community. Although some observers say that the worm was benign,
most say that the disruption of service and preemption of so many man-hours to analyze
the worm was a major national expense. Some observers have said that the worm was an
innocent experiment gone haywire, but the experts who analyzed the code dispute this,
saying that the many attack modes, the immortality of some worms, and the elaborate
camouflage all indicate that the author intended the worm to propagate widely before it
was disabled. Most members of the computer science community agree that users must
accept responsibility for the possible wide-ranging effects of their actions and that users
do not have license to access idle computers without permission. They also believe that
the professional societies should take the lead in public education about the need for
responsible use of critical data now stored extensively in computers. Similarly, system
administrators have responsibilities to take steps that will minimize the risk of disruption:
they should not tolerate trapdoors, which permit access without authentication: they
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should strengthen password authentication procedures to block guessed-password
attacks; they should isolate their backup systems from any Internet connection; and they
should limit participation in mutually trusting groups.

Certainly the vivid imagery of worms and viruses has enabled many outsiders to
appreciate the subtlety and danger of attacks on computers attached to open networks. It
has increased public appreciation of the dependence of important segments of the
economy, aerospace systems, and defense networks on computers and
telecommunications. Networks of computers have joined other critical networks that
underpin our society -- water, gas, electricity, telephone, air traffic control, banking, to
name a few. Just as we have worked out ways to protect and ensure general respect for
these other critical systems, we must work out ways to promote secure functioning

networks of computers. We cannot separate technology from responsible use.
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BOX 1: How the worm worked

The Internet worm of November 1988 was a program that invaded Sun 3 and VAX computers
running versions of the Berkeley 4.3 UNIX operating system containing the TCP/IP Internet protocols. Its
sole purpose was to enter new machines by bypassing authentication procedures and to propagate new
copies of itself. It was prolific, generating on the order of hundreds of thousands of copies among several
thousand machines nationwide. It did not destroy information, give away passwords, or implant Trojan
horses for later damage.

A new worm began life by building a list of remote machines to attack. It made its selections from
the tables declaring which other machines are trusted by its current host, from users’ mail-forwarding files,
from tables by which users give themselves permission for access to remote accounts, and from a program
that reports the status of network connections. For each of these potential new hosts, it attempted entry by
a variety of means: masquerading as a user by logging into an account after cracking its password;
exploiting a bug in the finger protocol, which reports the whereabouts of a remote user; and exploiting a
trapdoor in the debug option of the remote process that receives and sends mail. In parallel with attacks on
new hosts, the worm undertook to guess the passwords of user accounts on its current host. It first tried the
account name and simple permutations of it, then a list of 432 built-in passwords, and finally all the words
from the local dictionary. An undetected worm could have spent many days at these password-cracking
attempts.

If any of its attacks on new hosts worked, the worm would find itself in communication with a
*‘shell’* program -- a command interpreter — on the remote machine. It fed that shell a 99 line bootstrap
program, together with commands to compile and execute it, then broke the connection. If that bootstrap
program started successfully, it would call back the parent worm within 120 seconds. The parent worm
copied over enciphered files containing the full worm code, which was compiled from a C program
containing about 3,000 lines. The parent worm then issued commands to construct a new worm from the
enciphered pieces and start it.

The worm also made attempts at population control, looking for other worms in the same host and
negotiating with them which would terminate. However, a worm that agreed to terminate would first attack
many hosts before completing its part of the bargain -- leaving the overall birthrate higher than the
deathrate. Moreover, one in seven worms declared itself immortal and entirely bypassed any participation
in population control.

The worm’s author went to considerable pains to camouflage it. The main worm code was
enciphered and sent to the remote host only when the bootstrap was known 10 be operating there as an
accomplice. The new worm left no traces in the file system: it copied all its files into memory and deleted
them from a system’s directories. The worm disabled the system function that produces ‘‘memory dumps’’
in case of error, and it kept all character strings enciphered so that, in case a memory dump were obtained
anyway, it would be meaningless. The worm program gave itself a name that made it appear as an
innocuous shell to the program that lists processes in the system, and it frequently changed its process
identifier.
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Box 2: Protecting Passwords

The worm’s dramatic demonstration of the weakness of most password systems should prompt a

thorough examination in the context of networks of computers. The following are basic desiderata:

1.
2.

Every account should be protected by a password.

Passwords should be stored in an enciphered form, and the file containing the enciphered passwords
should not be publicly accessible (it is in UNIX).

Passwords should be deliberately chosen so that simple attacks cannot work -- for example, they
could include a punctuation mark and a numeral.

New passwords should be checked for security -- many systems have (friendly!) password checkers
that attempt to decipher passwords by systematic guessing, sending warning messages to users if
they are successful.

To make extensive guessing expensive, the running time of the password encryption algorithm
should be made high, on the order of one second. This can be achieved by repeatedly enciphering
the password with a fast algorithm.

- New cost-effective forms of user authentication should be employed, including devices to sense

personal characteristics such as fingerprints, retinal patterns, or dynamic signatures, as well as
magnetic access cards.

Sets of computers that are mutually trusting in the sense that login o one constitutes login to all need
to be carefully controlled. No computer outside the declared set should have unauthenticated access,
and no computer inside should grant access to an outside computer.
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Security of Data in Networks
American Scientist 1987, No 1

Telescience is NASA’s word for scientific research conducted via
networks that permit remote control of experiments and collaboration of
scientists around the world on analyzing the results. The safety of
remotely controlled experiments and integrity of research rest critically
on the ability of the network to authenticate senders and receivers, to
protect proprietary communications, and to sign some transmissions.
Mathematically sound schemes for encrypting data and distributing keys
make these goals attainable.

Telescience. This term is used by NASA to refer to scientific research conducted
with computers and instruments connected by networks over great distances. It includes
the remote design of experiments on space platforms, the operation of those experiments,
and the collaboration of scientists around the world in interpreting data and publishing
results. The next best thing to being there, telescience is expected to be a common mode
of research in all scientific fields by the mid 1990s.

For the safety of remotely-controlled operations and the integrity of their research,
experimenters want to be certain that they are linked to their own instruments when they
request connections and that no one else can connect to those instruments. They want to
be certain that no one can alter the data transmitted from their instruments, or the
authorized commands sent to the instruments. They want to be certain that proprietary
communications with their co-workers cannot be disclosed. The first guarantee, called
authentication, certifies the identity of a principal -- person, computer, or device --
accessible on the network. The second guarantee, called integrity, certifies that a data
stream actually comes from a previously authenticated source. The third guarantee,
called secrecy, certifies that the content of a data stream is hidden from outside view.
Data transmissions covered by these guarantees are called secure communications.
Telescience requires secure communications over high-bandwidth networks — 1 million
bits per second (Mbps) or more.

Who furnishes these guarantees? The agencies that design and operate a network
must provide for them in the communications protocols. All such mechanisms ultimately
require that each principal can possess or obtain information that identifies any other
principal. The identifying information can be embodied as a key to encipher data. The
mechanisms must be capable not only of efficiently enciphering and deciphering data,
but of distributing and protecting keys. In what follows, I will present a brief survey of
this fascinating subject. A comprehensive treatment can be found in Dorothy Denning’s
book Cryptography and Data Security (1).

Communication between principals can be a two-way conversation in real time, a
one-way, high-rate data stream, or a one-way mail or datagram message. Some
communications must be signed by attaching an unforgeable mark that will establish the
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sender’s identity beyond reasonable doubt.

A communications path through a network may include many links, switches,
computers, local networks, and internetwork gateways. In most networks these
components are vulnerable because data security was not a requirement of the original
design. Each component is a potential site for an intruder to eavesdrop on a
conversation, read mail, replay portions of prior messages, or alter a data transmission.
Because a pair of principals wishing to communicate have no control over these many

network components, they must use protocols that allow them to control the encryption
devices and the keys.

Traditional cryptosystems are based on a single key K known only to A and B, the
principals who wish to communicate. A message M is sent as ciphertext, denoted [M X .
This scheme provides authentication as well as secrecy: if an attempt by B to decipher a
message produces gibberish, B knows that A could not have been the sender.

The best known computer-based cryptosystem is the Data Encryption Standard
(DES), promulgated in 1977 by the National Bureau of Standards. The DES uses a 56-
bit key to encipher successive 64-bit blocks of data. Computer chips embodying the DES
algorithm operate at speeds beyond 10 Mbps, which is faster than needed for most wide-
area communication networks. Controversies arose at the beginning over whether the
DES key was long enough to prevent the code’s being broken by an enumerative search
for the key, and whether the code contained secret trapdoors that would permit the
government to read DES ciphers. Those controversies have quieted; no trapdoors have
been found. Double or triple encryption with different keys can be used for extra
protection. Because the DES is now ten years old, cryptographers have begun to seek
replacements suitable for commercial use.

Another kind of cryptosystem was proposed in 1976 by Whitfield Diffie and Martin
Hellman of Stanford University. They called theirs a public-key cryptosystem to
distinguish it from the traditional private-key systems. The public-key system uses two
complementary keys: one is made public and is used to encipher messages; the other is
kept secret and is used to decipher messages. The secret key cannot be deduced from the
public key. Single-key cryptosystems are symmetric because the same key is used for
both enciphering and deciphering; two-key cryptosystems are asymmetric. In a
symmetric cryptosystem, almost any binary pattern can serve as a key, but a good deal of
computation is required to generate a pair of keys for an asymmetric cryptosystem.

The notation for a public-key system is straightforward. A principal A holds secret
and public keys, denoted SA and PA. To communicate with A, B sends the ciphertext
[M]P4; A recovers the message by enciphering the ciphertext with the secret key,
because M=[[M]PA15A. A and B can hold a conversation by exchanging messages
enciphered under each other’s public keys. Secrecy is assured because there is only one
copy of the secret key, held by the principal who generated it.

Secrecy and authentication are separated in a two-key cryptosystem. Secrecy
results from enciphering with the recipient’s public key: anyone can generate [M ]PA, but
only A can decipher it. Authentication results from enciphering with the sender’s secret
key: only A can generate [M]A, and anyone can decipher it. Two encipherments are
needed to provide both: [[M ]54]1PB can be enciphered only by A and deciphered only by
B.
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The first public-key cryptosystem with these properties was devised in 1977 by
Ronald Rivest, Adi Shamir, and Len Adleman of MIT, and is known by their initials,
RSA (2). Tt works as follows: To generate a key, pick two large prime numbers p and q.
Then choose two integers d and e so that de mod (p—1)(¢—1) = 1. (In general, x mod y
means the remainder after dividing x by y.) Let n=pq. The secret key is (d,n) and the
public key is (e,n). To encipher, compute C =[M}*A = M¢mod n. To decipher,
compute M = [C]54=C?mod n. Deciphering recovers M because of a classical theorem
of Fermat that says M mod n=M.

As an example, suppose p =3 and ¢=11; then n=33 and (p -1)(g—1)=20. Pick
(d,e)=(3,7); this is valid because de mod 20 =21 mod 20 = 1. Suppose M =4, the
ciphertext is then C =16, because 47 mod 33 = 16384 mod 33 = (33x496+16) mod 33 =
16. The deciphered message is M =4, because 163 mod 33 = 4096 mod 33 =
(33x124+4) mod 33 =4.

The security of the RSA system relies on the extreme difficulty of factoring a large
composite number: If the prime components p and g could be recovered easily from #, a
deciphering key matching the public enciphering key could be computed easily. In the
summer of 1986, researchers at the Mitre Corporation factored an 84-digit number, the
largest ever, after several days of computation on a set of cooperating computers. To
protect against faster supercomputers and improved factoring algorithms, most designers
of RSA systems recommend that n be on the order of 200 digits (about 665 bits).

Computer chips containing the RSA algorithm have been developed. Because of
the large number of digits in each block of enciphered data (around 200), these chips are
rather slow, operating on the order of a few kilobits per second. This means that known
public-key systems are too slow for high-bandwidth, secret conversations between
computers.

What, then, is the advantage of a public-key system? It is the ability to separate
authentication from secrecy. This separation permits digital signatures, which allow
third parties to certify the identity of a sender. It works as follows: A signed message
consists of a header H, a body M, and a signature block X =[F (M )]4; the header asserts
that the message came from some sender, say A ; the signature is a small block computed
from M and then signed with A ’s secret key. The data-compression function F, often
called a hashing function, is public; its result, F (M), is called a checksum. The receiver
will accept the message only if the signature, deciphered with A ’s public key, is identical
to the checksum of the message actually received. If A claims that B changed the
message, or B claims that A sent a different message, a third party can resolve the
dispute by deciphering the signature and comparing it to the claimed message’s
checksum. If the message is a secret, the message body can be the ciphertext [M )X and
the enciphered key [K]P2 can be added to the signature block.

The same principles work in broader arenas. Suppose the space station contains a
telescope that emits a stream of data, which, by treaty, is supposed to be available to
every astronomer in the world. How can an astronomer be assured that a data stream is
in fact the one transmitted by the telescope, and that none of the data have been altered?
The raw data can be collected in a local buffer in the space telescope, which is assigned a
public key PT and secret key ST. Each buffer is treated as a message M; when the
buffer is full, the authenticator [F (M )}%7 is appended, and the result is transmitted
publicly. Any receiver can reverse the process and check that each block of data is
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authentic.

In 1978, Gus Simmons of Sandia Laboratories proposed a similar scheme for the
verification of compliance with test-ban treaties. He assumed that the United States
would require assurances that its monitoring device implanted in Soviet soil had not been

tampered with, and the Soviets would want to be able to read the transmissions of the
device.

There are many practical considerations to building secure signature systems that
will work in large networks. For example, the hashing function must deprive potential
intruders of effective means to construct fake messages with the same checksums as

authentic messages. The subject is covered well in articles by Donald Davies and
Dorothy Denning (3,4). :

A cryptosystem is useless unless distribution of keys is secure. Let us examine this
problem for networks in which all conversations are protected by private-key
cryptosystems. How are keys handed out so that the communicants are sure of one
another’s identities? An obvious solution relies on a registry service R. A private key is
generated for each principal A, one copy of which is stored in R and another copyona
key card (or other medium) that can be inserted into an encryption device attached to 4 .
Now it is possible for R to provide A with private keys for conversations with other
principals in the network. Roger Needham and Michael Schroeder have proposed
protocols that allow any A and B, with help from R, to obtain a private key for a secure
communication between them (5). Victor Voydock and Stephen Kent have shown how
to apply these protocols in real networks (6).

The dependability of networks is sensitive to the correct, reliable operation of key
registries. The whole approach becomes unwieldy in large networks: Failures of
registries can prevent principals from initiating new conversations and can compromise
keys. Trust itself is a serious issue in a large network; the US and Soviet governments,
for example, are not likely to believe that each other’s registries will refrain from
listening in on conversations for which they have passed out the keys.

The amount of faith required can be reduced by using public-key cryptography to
exchange the private keys for conversations. Now the registry service becomes simply a
directory service D . Principals can register public keys with D for later redistribution,
but they do not need to reveal their secret keys to D. To converse with B, A consults D
to obtain the public key PB, generates a conversation key K, and sends [K }P2 to B with
arequest to open a conversation. A must also authenticate itself to B, which can be done
with a certificate as discussed below. Now the responsibility for generating keys rests
with the communicants, and the directory service has no special knowledge that would
enable it to listen in on any conversations.

There is still a catch -- trusting the authenticity of public keys dispensed by the
directory service or by any other principal. The authenticity of this information can be
guaranteed by storing it as public-key certificates created, on request, by a network
notary service. Certificates are messages of the form [B ,PB T}V, where SN is the
secret key of the notary service and T is the time of the certificate’s creation. Anyone
can decipher a certificate using the notary’s public key, thereby obtaining the public key
of the principal identified therein. If for some reason the notary’s secret key is
compromised, all subsequently issued certificates are invalid. A good deal of effort must
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be put into protecting the notary’s secret key, but the effort is worthwhile because the
security of network communications does not rest on the trustworthiness of the directory
service (4).

The safety of remotely controlled experiments and integrity of research rest

critically on the ability of the network to authenticate senders and receivers, to protect
proprietary communications, and to sign some transmissions. Mathematically sound
schemes for encrypting data and distributing keys make security an attainable goal.
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Baffling Big Brother
American Scientist 1987, No 5

Smart cards and cryptography enable a new system of business
transactions that balances the power of individuals to control how
information about them is linked and disseminated against the need of
organizations to be certain that credentials and payments are valid. Each
person uses a different name (pseudonym) with each organization and a
personal card computer manages all the names and cryptographic
protocols. The most difficult protocols are for credentials and payments.
Even though we complain about a world in which our transactions are
too easily traced, would we want a world in which none of our
transactions could be traced?

Who hasn’t asked whether large organizations will one day be able to use
computers to monitor every detail of people’s lives? Who doesn’t occasionally wonder
whether our high-tech society is moving inexorably toward dossiers, surveillance,
scrutiny of private lives, and complete distrust of individuals? Who hasn’t asked whether
anything can be done about these trends?

Commercial transactions began to be computerized in the 1950s. Today, most
businesses entrust valuable information assets to electronic media, using them to store
records, compute accounts, transfer funds, and generate receipts.

Two trends have accompanied this widening use of computers. The rate of
computer abuse has risen in direct proportion to the value of information assets and the
expertise of users, and the existence of databases has created incentives to link the data
they contain. To protect against abuse, organizations demand personal information from
customers for checking credentials; they keep confidential files on customer activities,
payments, and credit histories, frequently making it difficult for customers and
employees to review or correct information in those files. On the other hand, they often
sell or distribute information about their clients to other organizations. Government
agencies have begun to link information in their own and some private databases in their
efforts to detect persons who are violating the law. What emerges is a one-sided
arrangement: most of the power to control information lies in the hands of organizations
and agencies. As a result, calls for legislation to protect individuals from abuse or
mistakes are increasingly heard.

Technology has been blamed for the gradual weakening of the individual’s power;
but can technology strengthen the individual? The answer is yes. Card computers -- the
so-called smart cards -- and public-key cryptography can be used to construct a system of
business transactions in which organizations have absolute assurance that all credentials
and payment orders are valid and individuals have absolute assurance that no group of
organizations can compile dossiers about them by linking databases.
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David Chaum of the Centre for Mathematics and Computer Science in Amsterdam
has proposed a system of transactions that allows ordinary communications, payments,
and credentials to be exchanged electronically (1,2). In Chaum’s system, it impossible
for the records of various organizations to be linked or traced to a specific individual;
individuals retain control over how information about them is used. The system also
protects the organizations against abuse -- perhaps even better than current systems.

Chaum’s starting point is the possibility that a person can create a different name --
a pseudonym -- for use with each organization. This is analogous to supplying each
bank, store, service establishment, or other organization with a different name, postal
address, and identification number. A card computer is needed to assist the person to
make transactions and keep track of which name is used with which organization. To
guarantee that they cannot be linked between organization, names are actually long
random numbers generated by the card computer. Public key cryptosystems are used for
communications and digital signatures.

Let me digress for a brief review of public key cryptosystems, which I described
more fully in the January-February issue (3). Associated with a name (or pseudonym) A
are two complementary keys chosen by A. The public key PA is used to encipher
messages intended for A, and the secret key SA is used by A to decipher messages. The
secret key cannot be deduced from the public key. To insure their security, the keys must
contain about 200 digits (approximately 665 bits). The encipherment of an item Z under
akey K is denoted [Z]X. A public key is sealed in a key certificate

K() =[A,PA,DFV,

where SN is the secret key of a trusted notary and D is the date and time of the notary’s
signature. Anyone receiving K (4 ) can unseal it by computing [K (4 )}PV, because the
public and private keys cancel; that recipient can have confidence that PA is A ’s public
key because only the notary could have sealed the certificate. A message M from A to B
is encoded as

[M K (A)FB.

Only B can decipher this message; B can reply to A by using the key enclosed with the
message. A block of the form [checksum(M )}54 can be attached to the message to serve
as a digital signature of the sender.

With cryptography, I can prevent organizations from linking records about me. I
simply generate a separate random number for each organization with which I deal and
use the numbers as pseudonyms in transactions with those organizations. It is impossible
for the organizations to link my assumed names because the connection between the
names is known only to me. Of course, if I reveal personal information in my messages,
organizations may be able to link message files under different pseudonyms by
comparing their contents. The assignment of separate pseudonyms guarantees only that
messages cannot be linked by using information in their headers and address fields.

Many business transactions depend on credentials, special tamperproof
certifications that a specific person is authorized or qualified to do something. Examples
are driver’s licenses, passports, and traveler’s checks. A credential issued by X can be



represented electronically by a cryptogram
[A authorized for T]5X.

Anyone can check that A has authorization for the specific transaction T by unsealing the
credential with the issuer’s public key. (A receiver of the above credential may demand
proof that its bearer is in fact A ; the important authentication protocols that accomplish
this are not covered here.)

Credentials of this sort do not work with a multiple pseudonym system. The
problem is that the pseudonym by which the person is known to the issuer is sealed
inside the credential. Thus, if I obtain a credential from a bank under name A certifying
me for $1000 in credit, a store knowing me as B will not honor that credential. What is
needed is a way to transform a credential issued under one pseudonym into a valid
credential under a different pseudonym, without restricting my choice of pseudonyms.

Chaum has devised a method of accomplishing this seemingly impossible task. The
idea is that a name has a special form, consisting of a fixed part uniquely associated with
the person multiplied by a variable part that depends on the particular organization with
which that name is used. The unique part can be obtained from a special registrar that
associates a unique identifier with a standard item of personal information such as a
thumbprint; a person need give no other information than this to the registrar. Because a
person’s unique identifier is a hidden, multiplicative component of a name, no one else
can learn it; in particular, the registrar will not be able to link the information it has --
unique identifiers plus thumbprints -- with any information held by another organization.

Within this scheme a challenge protocol is needed to permit a third party to
determine unequivocally that two pseudonyms belong to the same person. If some
organization challenges my claim that the pseudonyms A and B are both mine, both the
claim and the challenge can be submitted to an arbiter who can verify that the claim is
true or false without revealing my unique identifier. Protocols for doing this are beyond
the discussion here. I'll assume that the notary can serve this function.

To illustrate Chaum’s method, suppose that I want to request a credential of issuer
X under pseudonym A and present it to credential user ¥ under pseudonym B.
Associated with a credential of type T are secret and public keys, ST and PT, the secret
key being known only to the credential issuer X. Let U denote my unique identifier, and
let V and W denote random numbers I generate. From these numbers I create two
special pseudonyms for this transaction,

Uvier
UWIPT

a
b

and have them signed by the notary, who retumns them in the key certificates X (a) and
K (b). My request to X for a credential takes the form

[““Request T"", K (a), K (A))PX.

On receipt, X can check that as A I am authorized for T and return the credential in the
form
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[[a )T, K(T)}A.

I'can check that the credential comes from X and agrees with my request by unsealing it
with PT and checking that the resultis a. To generate the credential for my pseudonym
B, all I need to do is divide the credential by V and multiply by W. This works because
[@FT =[UIVIPTIT = [UYTV, and similarly [61T = [UTW. Ipasstheresultto Y in
the form

[“Claim T, (b15T, K (b), K (T), K (B)}FY.

Y can check the claim by unsealing the credential with PT and checking that the result is
b. Organization X can ask the notary to certify that the pair K (a) and K (4 ) are both
mine and Y can do the same for K (b) and K (B). Thus the challenge protocol can be
used by the organizations to assure themselves that I am not submitting special
pseudonyms and credentials belonging to another person.

Can this scheme be used for payments? The obvious approach is to extend
credentials into electronic bank checks: I obtain from my bank a credential that says ‘‘A
is good for $T *’; then I transform it as above to a credential that says *‘B is good for
$7°", which I pass to Y in payment of a bill. Unfortunately, an electronic bank check is
susceptible to tracing. Suppose I request a check for an unusual sum, say $385, and a
short time later Y deposits the same sum; by matching withdrawals and deposits, the
bank can to link my pseudonyms A and B.

To avoid this kind of tracing, Chaum proposes instead to use electronic currency.
When I make a withdrawal, the bank will return a set of certificates of standard
denominations; thus my payment of $385 might consist of three $100 certificates, eight
$10 certificates, and five $1 certificates. Unlike paper certificates, electronic ones are
easy to copy, so it is necessary to include a method that permits the bank to recognize the
first copy of a currency certificate. The obvious method, allowing the bank to attach a
note number to the original certificate, will not work because the note number would
permit the bank to link my pseudonyms A and B. What is needed instead is a way that
can provide a note number that the bank cannot associate with me, and seal that note
number in the credential.

One way to accomplish this is the following. Suppose k binary bits are allocated
for names. I will exploit the fact that if I string two copies of the & -bit name n together, I
create a binary string of 2k bits, representing the number n2¢+n. To initiate a payment
of denomination T, I choose a random note number N and hide it in the name
M=(N2K+N)[VIFT. My request to the bank takes the form

[*‘Request denomination T*’, M, K (A)IFX .
after deducting $T from my account, the bank returns the certificate

(MPT,K(T)PA .

When I divide the certificate by V, I transform it automatically to [N2¥+N]7. Ican
submit the transformed certificate to the store, which can unseal it with PT and verify
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from its two-copy structure that it is worth $T. In turn the store can submit the certificate
to the bank, which can extract the note number and deposit $T in the store’s account if
that note number has not been seen before.

Chaum’s system of transactions is different from current systems in three principal
ways. First, a person can use a different pseudonym, a random number, for each
organization. Current systems are based on universal identifiers. Second, a person can
use a card computer to manage interactions with organizations under each pseudonym, to
generate random numbers for use in names, and to carry out the cryptographic protocols.
A card computer need have no secrets from its owner. Current systems rely on
organizations giving customers cards that contain secret patterns known to the
organization but not to the card holders. Third, individuals get to control how
information about them is distributed and linked. Current systems are one-sided, giving
organizations most of the power to protect themselves from abusive customers while
giving customers little power to protect themselves from abusive organizations.

So a system of untraceable business transactions is technically feasible. But is such
a system politically feasible? Even though we complain about a world in which our

transactions are too easily traced, would we want a world in which none of our
transactions could be traced?
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How smart cards can help
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